Robust Advanced Sensor System for Determination of Volatile Organic Compounds (VOC)

Volume 8, Issue 4, August 2023     |     PP. 456-469      |     PDF (490 K)    |     Pub. Date: August 22, 2023
DOI: 10.54647/physics140564    77 Downloads     41427 Views  

Author(s)

Andreas Mangler, IEEE Member, RUTRONIK Elektronische Bauelemente GmbH, Ispringen, Germany
Julian Eise, TRUMPF Laser- und Systemtechnik GmbH, Ditzingen, Germany
Qi Zhang, VEGA Grieshaber KG, Schiltach, Germany

Abstract
Nowadays more and more health risks are increasing. Beside the viruses, there are also other particles which have an impact on the human well-being. The so called volatile organic compounds (VOCs) are substances in the air and can be harmful in high concentrations. Therefore, the detection of VOC value is particularly important.

Keywords
Electronic Nose, Volatile Organic Compounds, Sensor Fusion, Ionization, Excitation, Machine Learning, Robust Data Mining Algorithm, Photocatalysis, VOC Characterization, Embedded System

Cite this paper
Andreas Mangler, Julian Eise, Qi Zhang, Robust Advanced Sensor System for Determination of Volatile Organic Compounds (VOC) , SCIREA Journal of Physics. Volume 8, Issue 4, August 2023 | PP. 456-469. 10.54647/physics140564

References

[ 1 ] Debono, O.; Hequet, V.; Le Coq, L.; Locoge, N.; Thevenet, F. (2017). VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. In: Applied Catalysis B: Environmental 218 (2017) 359 – 369.
[ 2 ] Dietrich, S.; Kusnezoff, M.; Mosch, S.; Baumgärtner, C.; Trofimenko, N. (2017). Impedimetrische Untersuchungen an Elektroden Elektrochemischer CO2-Sensoren. In: 13. Dresdner Sensor-Symposium (2017) 99 - 104.
[ 3 ] Eise, J.R. (2020). Konzeption eines Data-Mining-Algorithmus auf Grundlage von Sensorfusionen im Bereich der Messung flüchtiger organischer Verbindungen. In: Masterthesis University of Applied Science Pforzheim (2020) 1-86.
[ 4 ] Fan, Z.; Lioy, P.; Weschler, C.; Fiedler, N.; Kipen, H.; Zhang, J. (2003). Ozone-Initiated Reactions with Mixtures of Volatile Organic Compounds under Simulated Indoor Conditions: In: Environmental Science and Technology 37 (2003) 1811-1821.
[ 5 ] Miekisch, W.; Schubert, J.K.; Noeldge-Schomburg, G.F.E. (2004). Diagnostic potential of breath analysis - focus on volatile organic compounds. In: Clinica Chimica Acta 347 (2004) 25-39.
[ 6 ] Mills, A.; Le Hunte, S. (1997). An overview of semiconductor photocatalysis. In: Journal of Photochemistry and Photobiology. A: Chemistry 108 (1997) 1-35.
[ 7 ] Mo, J.; Zhang, Y.; Xu, Q.; Lamson, J.J.; Zhao, R. (2009). Photocatalytic purification of volatile organic compounds in indoor air: A literature review. In: Atmospheric Environment 43 (2009) 2229-2246.
[ 8 ] Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R.N. (1999). Variation in volatile organic compounds in the breath of normal humans. In: Journal of Chromatography B 729 (1999) 75-88.
[ 9 ] Schipani, F.; Miller, D.R.; Ponce, M.A.; Aldao, C.M.; Akbar, S.A.; Morris, P.A. (2016). Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review. In: Advanced Sciences and Engineering Volume 5 (2016) 86-105.
[ 10 ] Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. (2010). Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. In: Sensors - Open Access Journal 10 (2010) 2088-2106.
[ 11 ] Kanoun, Olfa; Impedance Spectroscopy; Advanced Applications: Battery Research, Bio Impedance, System Design; (2018), 1-17
[ 12 ] Daneshvar, N; Salari, D; Khataee, AR (2004). „Photokatalytischer Abbau von Azofarbstoff Säurerot 14 in Wasser auf ZnO als alternativer Katalysator zu TiO2“. Zeitschrift für Photochemie und Photobiologie A: Chemie . 162 (2–3): 317–322. doi : 10.1016/S1010-6030(03)00378-2.
[ 13 ] X.Quan,S.Yang,X.Ruan,andH.Zhao,“Preparation of titania nanotubes and their environmental applications as electrode,”Environmental Science & Technology,vol.39,no.10,pp. 3770-3775, 2005.
[ 14 ] Baoliang Li1, Qu Zhou1*, Shudi Peng2 and Yiming Liao1; Recent Advances of SnO2-Based Sensors for Detecting Volatile Organic Compounds, 1College of Engineering and Technology, Southwest University, Chongqing, China; 2Chongqing Electric Power Research Institute, State Grid Chongqing Electric Power Company, Chongqing, China, Front. Chem., 05 May 2020.
[ 15 ] Abeer Alhadi, Shuyi Ma, Pure SnO2 Gas Sensor with High Sensitivity and Selectivity towards C2H5OH., Advances in Nanoparticles, 2021, 10, 66-74. 2169-0510
[ 16 ] Junjun Jia1, Haruka Yamamoto1, Toshihiro Okajima2 and Yuzo Shigesato1*;On the Crystal Structural Control of Sputtered TiO2 Thin Films; Nanoscale research Letters; Jia et al. Nanoscale Research Letters (2016) 11:324
[ 17 ] G.Korotcenkov, B.K.Cho; Metal oxide composites in conductometric gas sensors: Achievements and challenges; Sensor and Actuators B: Chemical, June 2017
[ 18 ] Sensirion Data Sheet SGP40 Download 2021 09 24; https://www.sensirion.com/en/download-center/gas-sensors/sgp40/
[ 19 ] S. Girish Kumar and L. Gomathi Devi* ; Review on Modified TiO2Photocatalysis under UV/Visible Light:Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics, Department of Post Graduate Studies in Chemistry, Bangalore University, Central College City Campus, Dr. Ambedkar Street,Bangalore-560001, Karnataka, India; J Phys Chem A . 2011 Nov 24;115(46):13211-41.
[ 20 ] Aleksandr S. Oshchepkov,* Maxim S. Oshchepkov, Margarita V. Oshchepkova,Ammar Al-Hamry, Olfa Kanoun, and Evgeny A. Kataev*; Naphthalimide-Based Fluorescent Polymers for Molecular Detection, Advanced Optical Materials DOI: 10.1002/adom.202001913
[ 21 ] Ada Fort 1,*, Enza Panzardi 1,*, Ammar Al-Hamry 2 , Valerio Vignoli 1 , Marco Mugnaini 1,Tommaso Addabbo 1 and Olfa Kanoun 2; Highly Sensitive Detection of NO2 by Au and TiO2 Nanoparticles Decorated SWCNTs Sensors; MDPI Sensors, Published: 18 December 2019; Sensors 2020, 20, 12; doi:10.3390/s20010012
[ 22 ] Ada Fort 1,* , Marco Mugnaini 1, Enza Panzardi 1 , Anna Lo Grasso 1, Ammar Al Hamry 2 , Anurag Adiraju 2, Valerio Vignoli 1 and Olfa Kanoun 2; Modeling the Conductivity Response to NO2 Gas of Films Based on MWCNT Networks; Sensors 2021, 21, 4723. https://doi.org/10.3390/s21144723