Influence of pyrolyzing temperature and time on lithium storage properties of the synthesized SiOx@C nanocomposites

Volume 1, Issue 1, October 2016     |     PP. 1-19      |     PDF (1189 K)    |     Pub. Date: October 16, 2016
DOI:    458 Downloads     8156 Views  

Author(s)

Xiaofang Feng, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, Nanchong 637009, China
Mingqi Li, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637009, China

Abstract
Polysiloxane@phenolic resin (Polysiloxane@RF) precursor is firstly synthesized by sol-gel method using resorcinol, formaldehyde and triethoxyethylsilanes as starting materials, and then pyrolyzed at a desired temperature for desired time. The as-prepared SiOx@C samples are characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, elemental analysis (EA), scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM), respectively. The synthesized SiOx@C composites consist of nanorods and nanospheres. The electrochemical measurement shows that the composition, microstructure and lithium storage properties of the synthesized SiOx@C nanocomposites are closely related with pyrolyzing temperature. Among them, the SiOx@C nanocomposite synthesized at 1000 oC for 3 h delivers the best comprehensive electrochemical performance.

Keywords
SiOx@C nanocomposite; lithium-ion batteries; anode; pyrolyzing temperature; electrochemical performance

Cite this paper
Xiaofang Feng, Mingqi Li, Influence of pyrolyzing temperature and time on lithium storage properties of the synthesized SiOx@C nanocomposites , SCIREA Journal of Energy. Volume 1, Issue 1, October 2016 | PP. 1-19.

References

[ 1 ] B. Yu, Y. Hwa, C. Park and H. Sohn, J. Mater. Chem. A 1, 4820 (2013).
[ 2 ] C. H. Doh, C. W. Park, H. M. Shin, D. H. Kim, Y. D. Chung, S. I. Moon, B. S. Jin, H. S. Kim and A. Veluchamy, J. Power Sources 179, 367 (2008).
[ 3 ] J. Wang, H. Zhao, J. He, C. Wang and J. Wang, J. Power Sources 196, 4811 (2011).
[ 4 ] Q. Si, K. Hanai, T. Ichikawa, M. B. Phillipps, A. Hirano, N. Imanishi, O. Yamamoto and Y. Takeda, J. Power Sources 196, 9774 (2011).
[ 5 ] M. Yamada, K. Uchitomi, A. Ueda, K. Matsumoto and T. Ohzuku, J. Power Sources 225, 221 (2013).
[ 6 ] A. A. Hubaud, Z. Yang, D. J. Schroeder, F. Dogan, L. Trahey and J. T. Vaughey, J. Power Sources 282, 639 (2015).
[ 7 ] H. J. Kim, S. Choi, S. J. Lee, M. W. Seo, J. G. Lee, E. Deniz, Y. J. Lee, E. K. Kim and J. W. Choi, Nano Lett. 16, 282 (2016).
[ 8 ] P. Lv, H. Zhao, C. Gao, T. Zhang and X. Liu, Electrochim. Acta 152, 345 (2015).
[ 9 ] W. Chang, C. Park, J. Kim, Y. Kim, G. Jeong and H. Sohn, Energ. Environ. Sci. 5, 6895 (2012).
[ 10 ] M. Li, Y. Yu, J. Li, B. Chen, X. Wu, Y. Tian and P. Chen, J. Mater. Chem. A 3, 1476 (2015).
[ 11 ] K. Meng, H. Guo, Z. Wang, X. Li, M. Su, B. Huang, Q. Hu and W. Peng, Powder Technol. 254, 403 (2014).
[ 12 ] P. Lv, H. Zhao, J. Wang, X. Liu, T. Zhang and Q. Xia, J. Power Sources 237, 291 (2013).
[ 13 ] D. J. Lee, M. Ryou, J. Lee, B. G. Kim, Y. M. Lee, H. Kim, B. Kong, J. Park and J. W. Choi, Electrochem. Commun. 34, 98 (2013).
[ 14 ] Y. Zhou, Z. Tian, R. Fan, S. Zhao, R. Zhou, H. Guo and Z. Wang, Powder Technol. 284, 365 (2015).
[ 15 ] M. K. Kim, B. Y. Jang, J. S. Lee, J. S. Kim and S. Nahm, J. Power Sources 244, 115 (2013).
[ 16 ] C. Park, W. Choi, Y. Hwa, J. Kim, G. Jeong and H. Sohn, J. Mater. Chem. 20, 4854 (2010).
[ 17 ] J. Lee, N. Choi and S. Park, Energ. Environ. Sci. 5, 7878 (2012).
[ 18 ] M. Li, Y. Zeng, Y. Ren, C. Zeng, J. Gu, X. Feng and H. He, J. Power Sources 288, 53 (2015).
[ 19 ] T. Cetinkaya, M. Uysal, M. O. Guler, H. Akbulut and A. Alp, Powder Technol. 253, 63 (2014).
[ 20 ] M. Su, Z. Wang, H. Guo, X. Li, S. Huang, L. Gan and W. Xiao, Powder Technol. 249, 105 (2013).
[ 21 ] Y. Ren and M. Li, J. Power Sources 306, 459 (2016).
[ 22 ] J. Meng, Y. Cao, Y. Suo, Y. Liu, J. Zhang and X. Zheng, Electrochim. Acta 176, 1001 (2015).
[ 23 ] H. Wang, P. Wu, H. Shi, W. Tang, Y. Tang, Y. Zhou, P. She and T. Lu, J. Power Sources 274, 951 (2015).
[ 24 ] H. Guo, R. Mao, X. Yang and J. Chen, Electrochim. Acta 74, 271 (2012).
[ 25 ] P. Lv, H. Zhao, C. Gao, Z. Du, J. Wang and X. Liu, J. Power Sources 274, 542 (2015).
[ 26 ] C. Gao, H. Zhao, P. Lv, C. Wang, J. Wang, T. Zhang and Q. Xia, J. Electrochem. Soc. 161, A2216 (2014).
[ 27 ] T. Horikawa, K. Ogawa, K. Mizuno, J. I. Hayashi and K. Muroyama, Carbon 41, 465 (2003).
[ 28 ] Y. Zhang, S. Shen and Y. Liu, Polym. Degrad. Stabil. 98, 514 (2013).
[ 29 ] L. Yue, W. Zhang, J. Yang and L. Zhang, Electrochim. Acta 125, 206 (2014).
[ 30 ] I. A. Rahman, P. Vejayakumaran, C. S. Sipaut, J. Ismail and C. K. Chee, Mater. Chem. Phys. 114, 328 (2009).
[ 31 ] X. Li, X. Zang, Z. Li, X. Li, P. Li, P. Sun, X. Lee, R. Zhang, Z. Huang, K. Wang, D. Wu, F. Kang and H. Zhu, Adv. Funct. Mater. 23, 4862 (2013).
[ 32 ] M. Li, Y. Yu, J. Li, B. Chen, A. Konarov and P. Chen, J. Power Sources 293, 976 (2015).
[ 33 ] H. Takezawa, K. Iwamoto, S. Ito and H. Yoshizawa, J. Power Sources 244, 149 (2013).
[ 34 ] X. Sun and S. Dai, J. Power Sources 195, 4266 (2010).