Utilization of Waste Heat And CO2 In Greenhouses Integrated Into Biogas-To-Electricity Systems That Use Agricultural Wastes: An Integrated Model Approach- A Rewiev

Volume 3, Issue 1, February 2019     |     PP. 1-16      |     PDF (391 K)    |     Pub. Date: March 24, 2019
DOI:    344 Downloads     7817 Views  

Author(s)

Jülide Erkmen, Department of Chemical Engineering, Faculty of Engineering, Kafkas University, TURKEY

Abstract
Along with the increasing world population and advancing technology, energy needs increase with each passing day and, consequently, necessitate the search for new energy sources. Increasing energy production has led to environmental pollution that has reached levels that threaten human health. This study proposes a model that can be used to reduce the hazardous waste of a biogas-to-electricity facility. The study suggests utilization of waste CO2 as a fertilizer and the heat of the waste gas to heat the system as means to avoid energy loss and to reduce harm to the environment. To provide ease of application to mass and energy wastes, in addition to the biogas unit, a greenhouse integrated model was proposed. A green engineering project that uses the maximum amount of natural resources, consumes minimum energy, and obtains maximum mass conversion was presented.

Keywords
Biogas, Energy, Waste Heat, CO2, Greenhouse

Cite this paper
Jülide Erkmen, Utilization of Waste Heat And CO2 In Greenhouses Integrated Into Biogas-To-Electricity Systems That Use Agricultural Wastes: An Integrated Model Approach- A Rewiev , SCIREA Journal of Environment. Volume 3, Issue 1, February 2019 | PP. 1-16.

References

[ 1 ] Adıgüzel, ,N.,Ö. Çomakli, İ. Ekmekci, S. Pusat. 2015. Economical evaluation of a cogeneration system for a building complex. Advances in Mechanical Engineering, 1–7.
[ 2 ] Akai, M., N. Nomura, H. Waku, M. Inoue. 1997. Life-cycle analysis of a fossil-fuel power plant with CO2 recovery and a sequestering system. Energy. 22: 249-255.
[ 3 ] Akiyama, T, K. Oikawa, T. Shimada, E. Kasai, J.I. Yagi. 2000. Thermodynamic analysis of thermochemical recovery of high temperature wastes. ISIJ Int. 40: 286–91.
[ 4 ] Akiyama, T, T Shima, T. Kasai, J.I. Yagi. 2000. Feasibility of waste heat recovery from molten slag. China–Jpn Int. Acad. Symp. 53–65.
[ 5 ] Aktaş, M. 1995. Bitki Besleme ve Toprak Verimliliği. Ankara Üniversitesi Ziraat Fakültesi Yayınları: 1202, Ders Kitabı: 347 s.
[ 6 ] Ando, J., T. Nakaha, H. Onous, S. Tchimura, M. Kondo. 1985. Development of slag blast granulation plant characterized by innovation of the slag treatment method, heat recovery, and recovery of slag as resources. Mitsubishi Heavy Indust. Techn. Rev. 87: 136–42.
[ 7 ] Archer, D.W.,J.L. Pikul, W.E. Riedell. 2002. Economic risk, returns and input use under ridge and conventional tillage in the northern Corn Belt, USA. Soil and Tillage Research ,67:1-8.
[ 8 ] Ay, E. 2010. Hava Kirliliği ve Modellemesi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Çevre Mühendisliği Bölümü, 110s.
[ 9 ] Benli, H., A. Durmus. 2009. Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy Build. 41:220–228.
[ 10 ] Bisio, G. 1997. Energy recovery from molten slag and exploitation of the recovered energy. Energy. 22(5):501–9.
[ 11 ] Bouwman, A.F. , L.J.M. Boumans, N.H. Batjes. 2002.Emissions N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem. Cycles. 16 :1058.
[ 12 ] Bot, G.P.A. 2001. Developments in indoor sustainable plant production with emphasis on energy saving. Comput Electron Agric. 30:151–65.
[ 13 ] CAST,1992. Preparing U.S. Agriculture for Global Climate Change, Task Force Report No. 119, Council for Agricultural Science and Technology, Ames, IA
[ 14 ] Chau, J.,T. Sowlati, S. Sokhansanj, F. Preto, S. Melin, X. Bi. 2009. Economic sensitivity of wood biomass utilization for greenhouse heating application. Appl Energy. 86:616–21.
[ 15 ] Chen, J., F. Xu, D. Tan, Z. Shen, L. Zhang,Q. Ai. 2015. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Applied EnergyVolume. 141(1):106–118.
[ 16 ] Chou, S.K., K.J. Chua, J.C. Ho, C.L. Ooi. 2004. On. the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Appl Energy. 77: 355–73.
[ 17 ] Çanka Kılıç,F. 2011. General Outlook of Biogas, The Importance of Its Usage, And Biogas in Turkey. Mühendis ve Makine, Vol. 52 ( 617) ,pp. 94-106
[ 18 ] Denhez, F. 2007. Küresel Isınma Atlası, NTV yayınları, İstanbul, 82s.
[ 19 ] Doktor, R.D., J.C., Molburg, N.F. Brockmeier, M. Lynn, G. Victor, R. Massood, J.S. Gary. 2001. Life-cycle analysis of a shell gasification-based multi-product system with CO2 recovery. Proc. 1st Nat. Conf. Carbon Sequestration, Washington, D.C., USA.
[ 20 ] Etheridge, D.M., L.P. Steele, R.J Francey, R.L. Langenfields. 1998. Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climate variability. Journal of Geophysical Research, 103: 15979-15993.
[ 21 ] Fiaschi, D.,L. Lombardi, G. Manfrida. 2000. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of an innovative energy cycle with zero CO2 emissions. Proc. 5th Int. Conf. Greenhouse Gas Control Technologies, Cairns.
[ 22 ] Fixen, P.E., A.M. Johnston. 2002. Nutrient budgets in North America. In: Plant Nutrient Use in North American Agriculture: Producing Food and Fiber, Preserving the Environment, and Integrating Organic and Inorganic Sources. PPI/ PPIC/FAR Technical Bulletin 2002(1):79–87.
[ 23 ] Frye, W.W.1984. Energy requirements in no tillage. In: Phillips, R.E., Phillips, S.H. (Eds.), No-tillage Agricultural Principles and Practices, Van Nostrand Reinhold, 127-151.
[ 24 ] Gong, W., X.-Y. Yan, J.-Y. Wang, T.-X. Hu, Y-B. Gong.2009. Long-term manuring and fertilization effects on soil organic carbon pools under a wheat–maize cropping system in North China Plain. Plant Soil. 314 (2009):67–76.
[ 25 ] Hirsch, A.I., A.M. Michalak, L.M. Bruhwiler, W. Peters, E.J. Dlugokencky, P.P. Tans. 2006. Inverse modeling estimates of global nitrous oxide surface flux form 1998–2001, Global Biogeochem. Cycl.,20.
[ 26 ] Hoffert, M.I., K. Caldeira, G. Benford, D.R. Criswell, C. Green, H. Herzog, A.K. Jain, H.S. Kheshgi, K.S. Lackner,J.S. Lewis, H.D. Lightfoot, W. Manheimer, J.C. Mankins, M.E. Mauel, L.J. Perkins, M.E. Schlesinger, T. Volk, T.M.L. Wigley. 2002. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science. 298:981-987.
[ 27 ] Hou, A.X., G.X. Chen, Z.P. Wang, O. Van Cleemput, H.W. Patrick. 2000. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes. Soil Sci. Soc. Am. J. 64:2180–2186.
[ 28 ] Houghton, J.T., Y. Ding, D.J. Griggs, M. Noguer, P.J. Van Der Linden, X. Dai. 2001. Climate change 2001: the scientific basis, vol. 881. Cambridge: Cambridge University Press;
[ 29 ] Houghton, J.,T. Meiro, L. Filho, B.A Callander, N. Harris, A. Kattenburg, K. Maskell. 1996. Climate change 1995: the science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change, vol. 19390. Cambridge University Press;
[ 30 ] IPCC,2007. Climate change 2007. mitigation of climate change. In: Metz B, Davidson OR, Bos PR, Dave R, Meyer LA, editors. Contribution of theWorking Group III to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom: Cambridge University Press..
[ 31 ] IPCC, 2001. Climate change 2001: the scientific basis. In: Houghton, J.T., Ding, Y. (Eds.), Noguer, M., van der Linden, P.J., Dai, X., Maskell, K. (Eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K. and New York, NY, USA, 881.
[ 32 ] Jarecki, M.,R. Lal. 2003. Crop management for soil carbon sequestration. Critical Reviews in Plant Sciences. 22:471-502.
[ 33 ] Johnson, J.M.F., A.J. Franzluebbers, S.L. Weyers, D.C. Reicosky. 2007a. Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution. 150:107-124.
[ 34 ] Kato, T., H. Kuroda, H. Nakasone.2009 Runoff characteristics of nutrients from an agricultural watershed with intensive livestock production. J. Hydrol. 368 (2009):79–87.
[ 35 ] Kashieaya, Y, I.N. Yutaro, T. Akiyama.2010. Development of a rotary cylinder atomizing method of slag for the production of amorphous slag particles. ISIJ Int. 50(9):1245–51.
[ 36 ] Koornneef, J., T.V. Keulen,A. Faaij, W. Turkenburg. 2008. Life cycle assessment of a pulverized coal power plant with postcombustion capture, transport and storage of CO2. Int. J. Greenhouse Gas Control. 2(4): 448–467.
[ 37 ] Kongshaug, G.1998. Energy consumption and greenhouse gas emissions in fertilizer production. IFA Technical Conference, Marrakech, Morocco. 28:18.
[ 38 ] Lassey, K.R. 2007. Livestock methane emissions: from the individual grazing animal through national inventories to the global methane cycle. Agricultural and Forest Meteorology 142:120-132.
[ 39 ] Lee, I.B., J. Pascual, S.W. Hong, I.H. Seo, K.S. Kwon, T. Bartzanas. 2013. The past, present and future of CFD for agro-environmental applications. Comput Electron Agric, 93:168–83.
[ 40 ] Linquist, B.A., K.J. van Groenigen, M.A. Adviento-Borbe,C.M. Pittelkow, C. van Kessel. 2012. An agronomic assessment of greenhouse gas emissions from major cereal crops. Global Change Biol. 18:194–209.
[ 41 ] Lombardi, L. 2003. Life cycle assessment comparison of technical solutions for CO2 emission reduction in power generation. Energy Convers. Manage. 44: 93–108.
[ 42 ] Mandal, B. , B. Majumder, P.K. Bandyopadhyay, G.C. Hazra, A. Gangopadhyay, R.N. Samantaray, A.K. Mishra, J. Chaudhury, M.N. Saha, S. Kundu 2007.The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India Global Change Biol., 13:357–369.
[ 43 ] Mizuochi, T, T. Akiyama, T. Shimada, E. Kasai, J.I. Yagi. 2001. Feasibility of rotary cup atomizer for slag granulation. ISIJ Int. 41:1423–1428.
[ 44 ] Nayak, S., G.N. Tiwari. 2010. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India. Appl Energy. 87:2984–93.
[ 45 ] Nie, Z, A. Korre, Ş. Durucan.2011. Life cycle modelling and comparative assessment of the environmental impacts of oxy-fuel and post-combustion CO2 capture, transport and injection processes. Energy Procedia. 4:2510–2517.
[ 46 ] Okay, D.,Ç. Demirtaş. 2007. Bursa Koşullarında Sıcaklık ve CO2 Değişimlerinin Mısır Bitkisinin Verim ve Evapotranspirasyon Üzerine Etkisinin Belirlenmesi. Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Tarım Bilimleri Dergisi . J. Agric. Sci.. 17(2): 81-87.
[ 47 ] Olgun, M. 2009. Tarımsal Yapılar. Ankara Üniversitesi Ziraat Fakültesi Ders Kitabı:529, Yayın No:1577, Ankara.
[ 48 ] Oenema, O., A. Bannink, S.G. Sommer, G.L. Velthof. 2001. Gaseous nitrogen emissions form livestock farming systems. In: Follett, R.F., Hatfield, J.L. (Eds.), Nitrogen in the Environment: Sources, Problems, and Management, Elsevier, Amsterdam, The Netherlands, (Ch. 10), 255–289.
[ 49 ] Ozgener, O.,A.A. Hepbasli. 2007.Review on the energy and exergy analysis of solar assisted heat pump systems. Renew Sust Energy Rev. 11:482–96.
[ 50 ] Özsayın, S. 2009. Karbondioksit Gübrelemesi, Akdeniz Üniversitesi Ziraat Fakültesi Toprak Bölümü Lisans Tezi, 56s.
[ 51 ] Peet, M.M.,D.W. Wolfe. 2000. Crop Ecosytem Responses to Climate Change- Vegetable Crops, CABI Publishing , New York.
[ 52 ] Pehnt, M., J. Henkel. 2009. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. Int. J. Greenhouse Gas Control 3(1):49–66.
[ 53 ] Phillips, R.E.,R.L. Blevins, G.W. Thomas, W.W. Frye, S.H. Phillips. 1980. No-tillage agriculture. Science. 208:1108-1113.
[ 54 ] Qiao, J., L. Yang, T. Yan, F. Xue, D. Zhao. 2012. Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric Ecosyst Environ. 146:103–12.
[ 55 ] Ramaswamy, V. 2001. Radiative forcing of climate change Intergovernment Panel on Climate Change, Climate Change 2001: The Scientific BasisCambridge University Press, Cambridge, UK .349-416
[ 56 ] Reicosky, D.C., J.L. Hatfield, R.L Sass. 2000. Agricultural contribution to greenhouse gas emissions. In: Reddy, R., Hodges, H. (Eds.), Climate Change and Global Crop Productivity. CABI Publishing, Wallingford, (www.unfccc.de)
[ 57 ] Sethi, V.P., S.K. Sharma. 2008. Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications, Sol Energy, 82:832–59.
[ 58 ] Sevgican, A. 1989. Örtü Altı Sebzeciliği. Tarımsal Araştırmaları Destekleme ve Geliştirme Vakfı Yayın. Yalova. . 19: 62-65.
[ 59 ] Shen, Z., L.-Z. Yang, Y.-M. Yao, D.-D. Wu, J. Wang, R. Guo, S. Yin.2007. Long-term effects of fertilizer managements on crop yields and organic carbon storage of a typical rice–wheat agroecosystem of China. Biol. Fertil. Soils. 44:187–200.
[ 60 ] Singh, B.,A.H. Strømman, E. Hertwich. 2011. Life cycle assessment of natural gas combined cycle power plant with post-combustion carbon capture, transport and storage. International Journal of Greenhouse Gas Control.5(3):457-466.
[ 61 ] Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S.O. Ogle, F. Mara, C. Rice, B. Scholes, O. Sirotenko. 2007. Agriculture. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (Eds.), Climate Change 2007:Mitigation. Contribution of working group III to the fourth assessment report of the Intergovernmental Panel on Climate Change). Cambridge University Press, Cambridge, UK and New York, NY, USA. 497–540.
[ 62 ] Speece, R.E.1996. Anaerobic Biotechnology for Industrial Wastewater. Arche Press, Tennesse,
[ 63 ] Staffort, D.A., D.L. Hawkes, H.R. Horton. 1980. Methane production from wasteorganic matter , revision of a 1974 Agriculture Canada Publication, no: 1528, Canada.
[ 64 ] Terwel, B. W.,F. Harinck,N. Ellemers. 2009. Competence,Based and Integrity,Based Trust as Predictors of Acceptance of Carbon Dioxide Capture and Storage (CCS). Risk Analysis. 29(8):1129-1140.
[ 65 ] Tezcan, A., A. Atılgan,Ö. Hasan.2011. Seralarda Karbondioksit Düzeyi, Karbondioksit Gübrelemesi ve Olası Etkileri .Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi 6 (1): 44-51.
[ 66 ] Triberti, L.,A. Nastri, G. Giordani, F. Comellini, G. Baldoni, G. Toderi.2008. Can mineral and organic fertilization help sequestrate carbon dioxide in cropland?. Eur. J. Agron., 29:13–20.
[ 67 ] UNESCO and SCOPE. 2007. Human Alteration of the Nitrogen Cycle: Threats, Benefits and Opportunities. April 2007-No. 4. UNESCO-SCOPE, Paris, France.
[ 68 ] US EPA, 2005. U.S. Greenhouse Gas Inventory Reports: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990e2004. US EPA #430-R-06- 002. United States Environmental Protection Agency, Office of Atmospheric Programs (6207J), Washington, DC 20460. Available from: http://epa.gov/climatechange/emissions/usinventoryreport.html.
[ 69 ] Vadiee, A., V. Martin. 2013. Energy analysis and thermoeconomic assessment of the closed greenhouse – the largest commercial solar building. Appl Energy. 102:1256–66.
[ 70 ] Velthoff, G.L.,P.J. Kuikman, O. Oenema. 2003. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils. 37:221– 230.
[ 71 ] Weiske, A., S.O. Petersen. 2006. Mitigation of greenhouse gas emissions from livestock production. Agriculture, Ecosystems & Environment. 112:105-106.
[ 72 ] Wood, S., Cowie, A. A.,(2004), Review of greenhouse gas emission factors for fertiliser production, IEA Bioenergy Task, 38,20.
[ 73 ] Wurr, D.C.E.,D.W.Hand.1998. Climate change: a response surface study of the effects of CO2 and temperature on the growth of beetroot, carrots and onions. J. Agric. Sci., Camb. 131:125–133.
[ 74 ] Xie, D.,B. Washington, T. Norgate, S. Jahanshahi. 2005. Dry granulation of slag-turning waste into valuable cement binder. CAMP-ISIJ Int. 18:1088–1091.
[ 75 ] Xu, YT, Y. Ding,Z.P. Cai, Q. Liu, S.F. Ye.2007.Development of heat recovery from blast furnace slag using granulation methods. China Metall.17(9):23–5.
[ 76 ] Yu, QB, J.X. Liu, C.X. Dou, X.Z. Hu.2009. Dry granulation experiment of blast furnace slag by rotary cup atomizer. J Northeast Univ (Nat Sci). 30(8):1163–1165.
[ 77 ] Zhenggang, N., A. Korre, S. Durucan. 2011. Life cycle modelling and comparative assessment of the environmental impacts of oxy-fuel and post-combustion CO2 capture, transport and injection processes. Energy Procedia. 4:2510–2517.
[ 78 ] Zhang, X., S. Yina, Y. Li, H. Zhuang, C. Li, C. Liua. 2014. Comparison of greenhouse gas emissions from rice paddy fields under different nitrogen fertilization loads in Chongming Island, Eastern China. Science of the Total Environment. 472:381–388.