On the Possible Evolutionary History of the Water Ocean on Venus

Volume 6, Issue 6, December 2021     |     PP. 154-170      |     PDF (1383 K)    |     Pub. Date: December 13, 2021
DOI: 10.54647/physics14381    68 Downloads     5377 Views  

Author(s)

Tetsuya Hara, Department of Physics, Kyoto Sangyo University, Kyoto 603-8555, Japan
Anna Suzuki, Department of Physics, Kyoto Sangyo University, Kyoto 603-8555, Japan

Abstract
We have investigated the possible evolutionary history of the water ocean on Venus, adopting the one-dimensional radiative-convective model, including the parameters as albedo and relative humidity. Under this model, it has the possibility that the habitable zone could include Venus. It could continue for∼1Gy in faint young solar flux increasing, with modest parameters such as albedo=0.3, relative humidity (RH=1), and pn0=105Pa. If we relax parameters considering the 3-Dimensional calculations, the ocean could exist there longer than∼4.6 Gy. In such cases, we have to consider the cause of runaway other than just solar luminosity increasing. It is important to investigate Venus history for the coming future of Earth and observations of exoplanets for their historical habitable zones.

Keywords
venus, ocean, history

Cite this paper
Tetsuya Hara, Anna Suzuki, On the Possible Evolutionary History of the Water Ocean on Venus , SCIREA Journal of Physics. Volume 6, Issue 6, December 2021 | PP. 154-170. 10.54647/physics14381

References

[ 1 ] Abe Y., Matsui T. 1988, J. Atmos. Sci. 45, 3081.
[ 2 ] Bahcall J.N., Pinsonneault M. H., Basu S. 2001, APJ, 555, 990.
[ 3 ] Donahue T.M., Hoffman J.H., Hodges Jr. R.R., Watson A.J. 1982, Science, 216, 630.
[ 4 ] Goldblatt C., Robinson T.D., Zahnle K. J., Crisp D. 2013, Nature Geosci. 6, 661.
[ 5 ] Goldblatt C. Watson A. J. 2012, Phil. Trans. R. Soc. A370, 4197.
[ 6 ] Hamano K., Abe Y., Genda H. 2013, Nature 497, 607.
[ 7 ] Harrison T.M. 2009, Annu. Rev. Earth Planet. Sci. 37, 2009, 479.
[ 8 ] Hartmann W.K., Quantin C., Mangold N. 2007, Icarus, 186, 11.
[ 9 ] Hashimoto G. L., et al. 2008, J. Geophys. Res. 113, E00B24.
[ 10 ] Hashimoto G.L., Sugita S. 2003, J. Geophys. research, 108, E9, 5109.
[ 11 ] Ingersoll A.P. 1969, J. Atmos. Sci. 26, 1191.
[ 12 ] Kane S.R. et al. 2019, J. Geophys. Research Planets, 124, 2015
[ 13 ] Kasting J.F. 1988, Icarus, 74, 472.
[ 14 ] Komabayashi M. 1967, J. Meteor. Soc. Japan, 45, 137.
[ 15 ] Kopparapu et al. 2014, ApJL, 787, L29.
[ 16 ] Kreslavsky M.A., Ivanov M. A., Head J. W. 2015, Icarus, 250, 438.
[ 17 ] Leconte J. Forget F., Charnay, Wordsworth R., Selsis F., Millour E. 2013, Nature, 504, 268.
[ 18 ] Nakajima S., Hayashi Y., Abe Y. 1992, J. Atmospheric. Scie. 23, 2256.
[ 19 ] Pierrehumbert R.T. 2010, Exoplanet Atmosphere: Physical Process, Cambridge Univ. Press, Cambridge, UK.
[ 20 ] Seager S. 2010, Exoplanet Atmosphere: Physical Process, Princeton Univ. Press, Princeton, NJ.
[ 21 ] Sekiya M., Nakazawa K., Hayashi C. 1981, Prog. Theor. Phys. 66, 1301.
[ 22 ] Way M.J. et al. 2016, Geophys. Res. Lett. 43, 8376.
[ 23 ] Taylor F., Grinspoon D. 2009, J. Geophy. Res. 114, E00B40.
[ 24 ] Way M.J., Del Genio A.D. 2020, J. Geophys. Res. Planets, 125, e2019JE006276.
[ 25 ] Yang J., Boue G., Fabrycky D.C., Abbot D.S. 2014, ApJL, 787, L2.
[ 26 ] Zsom A., Seager S., de Witt J., Stamenkovic V. 2013, ApJ, 778, 109.
[ 27 ] Part of this work was addressed ” Search for Life, from Early Earth to Exoplanets” at Quy Nhon, Vietnam (Dec. 11-17, 2016).