*Simulation of polymer melts using Radial Basis Function and Brownian configuration field method*

**DOI:**10.54647/mechanical460112 14 Downloads 367 Views

**Author(s)**

**Abstract**

Polymer melts are viscoelastic fluids and extremely complex fluids due to the existence of very high density of polymer molecules. Polymer melt rheology aims to understand and quantify the viscous and elastic properties of a polymer. In this work, the Integrated Radial Basis Function based Brownian configuration fields (IRBF - BCF) is further developed to simulate the dynamic behaviours of polymer melt flows. For the method, a polymer melt is governed by the macro-micro governing equations, which is processed for the solution of the primitive variables (velocity and pressure fields, and the kinetic behaviours of polymer melt for the flow’s stress tensor). In this paper, polymer melt is modelled using "single-segment" reptation models or tube models where the polymer stress is averagely computed from an ensemble of thousands of tube segments at each grid point. The use of a Cartesian grid-based 1D-Integrated RBF (IRBF) approximation not only helps to avoid any complex meshing process but also to ensure a fast convergence rate for the solution of macro-micro governing equations. Furthermore, the use of BCF maintains the correlation of polymer stress fields in the simulation and hence enhances the numerical stability of the method. As an illustration of the method, the start-up Couette polymer melt flow and the polymer melt flow over a cylinder in a channel are investigated using four classical reptation models including the Doi-Edwards, Curtiss-Bird, Reptating Rope and Double Reptation models.

**Keywords**

Brownian configuration fields, Integrated Radial Basis Function, polymer melt, Doi and Edwards model, reptation models

**Cite this paper**

Hung Quoc Nguyen, Canh-Dung Tran,
Simulation of polymer melts using Radial Basis Function and Brownian configuration field method
, *SCIREA Journal of Mechanical Engineering*.
Volume 5, Issue 1, February 2024 | PP. 26-61.
10.54647/mechanical460112

**References**

[ 1 ] | R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of polimeric liquids, Vol 2: Kinetic theory, The first. New York: John Wiley & Sons, 1987. |

[ 2 ] | P. G. de Gennes, “Reptation of a polymer chain in the presence of fixed obstacles,” J Chem Phys, vol. 55, pp. 572–579, 1971. https: Doi:10.1063/1.1675789 |

[ 3 ] | M. Doi and S. F. Edwards, “Dynamics Of Concentrated Polymer Systems. Part 1: Brownian motion in the equilibrium state,” J. Chem. Soc., Faraday Trans. II, vol. 74, pp. 1789–1801, 1978, Doi: 10.1039/F29787401789. |

[ 4 ] | M. Doi and S. F. Edwards, “Dynamics Of Concentrated Polymer Systems. Part 2: Molecular-Motion Under Flow,” J. Chem. Soc., Faraday Trans. II, vol. 74, pp. 1802–1817, 1978, Doi: 10.1039/F29787401802. |

[ 5 ] | M. Doi and S. F. Edwards, “Dynamics Of Concentrated Polymer Systems. Part 3: Constitutive Equation,” J. Chem. Soc., Faraday Trans. II, vol. 74, pp. 1818–1832, 1978, Doi: 10.1039/F29787401818. |

[ 6 ] | C. F. Curtiss and R. B. Bird, “A kinetic theory for polymer melts. I. The equation for the single-link orientational distribution function,” J Chem Phys, vol. 74, pp. 2016–2025, 1981. Doi: 10.1063/1.441246 |

[ 7 ] | C. F. Curtiss and R. B. Bird, “A kinetic theory for polymer melts. II. The stress tensor and the rheological equation of state,” J Chem Phys, vol. 74, pp. 2026–2033, 1981. Doi: 10.1063/1.441247 |

[ 8 ] | R. B. Bird, H. H. Saab, and C. F. Curtiss, “A kinetic theory for polymer melts. III. Elongational flows,” J Phys Chem, vol. 86, no. 7, pp. 1102–1106, 1982. Doi: 10.1021/j100396a011 |

[ 9 ] | R. B. Bird, H. H. Saab, and C. F. Curtiss, “A kinetic theory for polymer melts. IV. Rheological properties for shear flows,” J Chem Phys, vol. 77, pp. 4747–4757, 1982. Doi: 10.1063/1.444378 |

[ 10 ] | R. J. J. Jongschaap, “Some Comments on Reptation Theories,” in Progress and Trends in Rheology II. Proceedings of the Second Conference of European Rheologists, Prague, June 17–20, 1986, H. Giesekus and M. F. Hibberd, Eds. Prague: Springer, 1988, pp. 99–102. |

[ 11 ] | R. J. J. Jongschaap and B. J. Geurts, “A New Reptation Model for Polymeric Liquids,” in Integration of Fundamental Polymer Science and Technology - 2, P. J. Lemstra and L. A. Kleintjens, Eds. 1988, pp. 461–465. Doi: 10.1007/978-94-009-1361-5_69 |

[ 12 ] | J. des Cloizeaux, “Double Reptation vs. Simple Reptation in Polymer Melts,” Europhys Lett, vol. 5, pp. 437–442, 1988. Doi: 10.1209/0295-5075/5/5/010 |

[ 13 ] | H. C. Ottinger, “Computer simulation of reptation theories. I. Doi-Edwards and Curtiss-Bird models,” J Chem Phys, vol. 91, pp. 6455–6462, 1989. Doi: 10.1063/1.457361 |

[ 14 ] | H. C. Ottinger, “Computer simulation of reptation theories. II. Reptating rope model,” J Chem Phys, vol. 92, pp. 4540–4547, 1990. Doi: 10.1063/1.457714 |

[ 15 ] | H. C. Ottinger and M. Laso, “Smart polymers in finite element calculation,” Theoretical and Applied Rheology, vol. 1, pp. 286–288, 1992. |

[ 16 ] | R. Keunings, “Micro-macro methods for the multiscale simulation of viscoelastic flow using molecular models of kinetic theory. Rheology Reviews,” Rheology Reviews, pp. 67–98, 2004. |

[ 17 ] | M. A. Hulsen, A. P. G. van Heel, and B. H. A. A. van den Brule, “Simulation of viscoelastic flows using Brownian configuration fields,” J Nonnewton Fluid Mech, vol. 70, no. 1, pp. 79–101, 1997. Doi: 10.1016/S0377-0257(96)01503-0 |

[ 18 ] | D. Tran-Canh and T. Tran-Cong, “Computation of viscoelastic flow using neural networks and stochastic simulation,” Korea-Australia Rheology Journal, vol. 14, no. 2, pp. 161–174, 2002. |

[ 19 ] | D. Tran-Canh and T. Tran-Cong, “Element-free simulation of dilute polymeric flows using Brownian Configuration Fields,” Korea-Australia Rheology Journal, vol. 16, no. 1, pp. 1–15, 2004. |

[ 20 ] | C.-D. Tran, D. G. Phillips, and T. Tran-Cong, “Computation of dilute polymer solution flows using BCF-RBFN based method and domain decomposition technique,” Korea-Australia Rheology Journal, vol. 21, no. 1, pp. 1–12, 2009. |

[ 21 ] | N. Mai-Duy, K. Le-Cao, and T. Tran-Cong, “A Cartesian grid technique based on one-dimensional integrated radial basis function networks for natural convection in concentric annuli,” Int J Numer Methods Fluids, vol. 57, no. 12, 2008. Doi: 10.1002/fld.1675 |

[ 22 ] | C. M. T. Tien, N. Thai-Quang, N. Mai-Duy, C.-D. Tran, and T. Tran-Cong, “A three-point coupled compact integrated RBF scheme for second-order differential problems,” CMES - Computer Modeling in Engineering and Sciences, vol. 104, no. 6, pp. 425–469, 2015. |

[ 23 ] | C.-D. Tran, N. Mai-Duy, K. Le-Cao, and T. Tran-Cong, “A continuum-microscopic method based on IRBFs and control volume scheme for viscoelastic fluid flows,” CMES - Computer Modeling in Engineering and Sciences, vol. 85, no. 6, pp. 499–519, 2012. |

[ 24 ] | C.-D. Tran, D.-A. An-Vo, N. Mai-Duy, and T. Tran-Cong, “An integrated RBFN-based macro-micro multi-scale method for computation of visco-elastic fluid flows,” CMES - Computer Modeling in Engineering and Sciences, vol. 82, no. 2, pp. 137–162, 2011. |

[ 25 ] | H. Q. Nguyen, C.-D. Tran, and T. Tran-Cong, “A multiscale method based on the fibre configuration field, IRBF and DAVSS for the simulation of fibre suspension flows,” CMES - Computer Modeling in Engineering and Sciences, vol. 109, no. 4, pp. 361–403, 2015. |

[ 26 ] | H. Nguyen and C.D. Tran, “Simulation of non-dilute fibre suspensions using RBF-based macro–micro multiscale method,” Korea-Australia Rheology Journal, vol. 34, no. 1, pp. 1–15, 2022. Doi: 10.1007/s13367-022-00022-1 |

[ 27 ] | H. Q. Nguyen, C.-D. Tran, and T. Tran-Cong, “RBFN stochastic coarse-grained simulation method: Part I - Dilute polymer solutions using bead-spring chain models,” CMES - Computer Modeling in Engineering and Sciences, vol. 105, no. 5, pp. 399–439, 2015. |

[ 28 ] | C. C. Hua and J. D. Schieber, “Viscoelastic flow through fibrous media using the CONNFFESSIT approach,” J Rheology, vol. 42, pp. 477–491, 1998. Doi: 10.1122/1.550960 |

[ 29 ] | A. P. G. van Heel, M. A. Hulsen, and B. H. A. A. van den Brule, “Simulation of the Doi-Edwards model in complex flow,” J Rheology, vol. 43, pp. 1239–1260, 1999. Doi: 10.1122/1.551022 |

[ 30 ] | B. Bernstein, E. Kearsley, and L. Zapas, “A study of stress relaxation with finite strain,” Transactions of The Society of Rheology, vol. 7, no. 1, pp. 391–410, 1963. Doi:10.1122/1.548963 |

[ 31 ] | A. Kaye, Non-Newtonian flow in incompressible fluids. College of Aeronautics Cranfield, 1962. |

[ 32 ] | N. Phan-Thien and R. I. Tanner, “A new constitutive equation derived from network theory,” J Nonnewton Fluid Mech, vol. 2, no. 4, pp. 353–365, 1977. Doi: 10.1016/0377-0257(77)80021-9 |

[ 33 ] | T. C. B. McLeish and R. G. Larson, “Molecular constitutive equations for a class of branched polymers: The pom-pom polymer,” J Rheology, vol. 42, no. 1, pp. 81–110, 1998. Doi: 10.1122/1.550933 |

[ 34 ] | H. C. Ottinger, Stochastic processes in polymeric fluids: tools and examples for developing simulation algorithms. Berlin: Springer, 1996. |

[ 35 ] | Y. Masubuchi, “Simulating the flow of entangled polymers,” Annu Rev Chem Biomol Eng, vol. 5, pp. 11–33, 2014. Doi:10.1146/annurev-chembioeng-060713-040401 |

[ 36 ] | N. Thai-Quang, N. Mai-Duy, C.-D. Tran, and T. Tran-Cong, “High-order alternating direction implicit method based on compact integrated-rbf approximations for unsteady/steady convection-diffusion equations,” CMES - Computer Modeling in Engineering and Sciences, vol. 89, no. 3, 2012. |

[ 37 ] | H. C. Ottinger and M. Laso, “Bridging the gap between molecular models and viscoelastic flow calculations,” in Technical Papers of the Annual Technical Conference, Society of Plastics Engineers Incorporated, 1995, pp. 2604–2618. Doi: 10.1371/journal.pone.0014070 |

[ 38 ] | C. C. Hua and J. D. Schieber, “Application of kinetic theory models in spatiotemporal flows for polymer solutions, liquid crystals and polymer melts using the CONNFFESSIT approach,” Chem Eng Sci, vol. 51, pp. 1473–1485, 1996. Doi: 10.1016/0009-2509(95)00304-5 |

[ 39 ] | D. S. Malkus, J. A. Nohel, and B. J. Plohr, “Dynamics of shear flow of a non-Newtonian fluid,” J Comput Phys, vol. 87, no. 2, pp. 464–487, 1990. Doi: 10.1016/0021-9991(90)90261-X |

[ 40 ] | T. C. B. McLeish and R. C. Ball, “A molecular approach to the spurt effect in polymer melt flow,” J Polym Sci B Polym Phys, vol. 24, no. 8, pp. 1735–1745, 1986. Doi: 10.1002/polb.1986.090240809 |

[ 41 ] | A. N. Beris, M. Avgousti, and A. Souvaliotis, “Spectral calculations of viscoelastic flows: evaluation of the Giesekus constitutive equation in model flow problems,” J Nonnewton Fluid Mech, vol. 44, pp. 197–228, 1992. Doi: 10.1016/0377-0257(92)80051-X |

[ 42 ] | M. Keentok, A. G. Georgescu, A. A. Sherwood, and R. I. Tanner, “The measurement of the second normal stress difference for some polymer solutions,” J Nonnewton Fluid Mech, vol. 6, no. 3–4, pp. 303–324, 1980. Doi: 10.1016/0377-0257(80)80008-5 |

[ 43 ] | N. Phan-Thien and H.-S. Dou, “Viscoelastic flow past a cylinder: drag coefficient,” Comput Methods Appl Mech Eng, vol. 180, no. 3, pp. 243–266, 1999. Doi: 10.1016/S0045-7825(99)00168-1 |